
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden tor this collection ot intormation is estimated to average 1 hour per response, including the time Tor reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washinaton. DC 20503. h
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

22.Nov.05 MAJOR REPORT
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

FOUNDATIONS FOR SECURITY AWARE SOFTWARE DEVELOPMENT
EDUCATION.

6. AUTHOR(S)

MAJ MCDONALD JEFFREY T

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

FLORIDA STATE UNIVERSITY REPORT NUMBER

C104-1706

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

THE DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER

AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited distribution -" ATIU,!,1T A
In Accordance With AFI 35-205/AFIT Sup 1•-I = ý" ý . ..

Approved for Public Release
Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

10
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT

Stanidard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDiOR, Oct 94



THE VIEWS EXPRESSED IN THIS ARTICLE ARE
THOSE OF THE AUTHOR AND DO NOT REFLECT
THE OFFICIAL POLICY OR POSITION OF THE
UNITED STATES AIR FORCE, DEPARTMENT OF
DEFENSE, OR THE U.S. GOVERNMENT.

§0051209 004



Foundations for Security Aware Software Development Education

Abstract
overflows occur because programmers do not follow

Software vulnerability is part and parcel of modern well-known programming practices, resulting in

information systems. Even though eliminating all software delivered with unresolved faults. Buffer

vulnerability is not possible, reducing exploitable overflow repair has little to do with security of the

code can be accomplished long term by laying the application being repaired; in fact, most buffer

right programming foundations. We argue that the overflow exploits use the vulnerability to gain access

current hot topic of so-called "secure coding" privileges they would otherwise not have, though the

represents commonly taught coding techniques to resulting mischief or malice are rarely
ensure robustness, rather than any commonly directed at the vulnerable application itself.
understood concept of security. In this paper, we So, most of the instances that we see today advertised
show how rigorous coding techniques should be as software exploitation is nothing more than software
woven into the fabric of computer science curriculum failure. Security can be seen under the larger
and ultimately should be distinguished from umbrella of software assurance-which covers failure
requirements-driven security techniques. Coding for from both malicious and non-malicious interactions.
security is useless without rigorous fault-tolerant Whether failure comes from execution of
coding techniques. However, the two are best unintentionally buggy programs or the malicious
separated pedagogically with a reinforcing theme in exploitation of a weakness inherent in code-software
educational environments. This instructional faults cause loss of productivity and subsequently loss
paradigm shift will ultimately produce programmers, of revenue.
developers, and software engineers who habitually A primary goal of software assurance is to engineer
create security aware software. robustness from the ground up. When robustness is in

view, problems identified as security flaws can be

1. Introduction seen as problems that stem more from poor
programming practices than security threats. Without

As the saying goes, the best defense is a good offense. laying a proper foundation in "good" coding practices

Defensive coding practices, which are termed by for fault tolerant software to begin with, integrating

many as "secure coding" [1, 2], are intended to security goals into software becomes useless. We

offensively counter the growing threat of software present our view of a needed paradigm shift in

vulnerability exploitation. Buffer overflows [3,4] educational environments that focuses on teaching

have been a hot topic of secure coding because they principles of coding for robustness and security.

remain commonplace in diverse attack schemes where Though they are two distinct pedagogic concepts,

malicious code is injected and then executed on a security builds squarely upon robustness and both
victim system. As Hogland and McGraw state, buffer should be incorporated strategically into computer

overflows are the "whipping boy of software security" science curriculums. Strengthening the foundation of
because of all the hype and fear they generate [5]. what and how we teach future programmers aboutFixes to buffer overflow problems emerge in software robust practices will provide the necessary foundation

Fixe tobuffr oerflw poblms eerg in oftare to incorporate security specific goals.
system after system, usually after the fact and usually
addressing only symptoms of a greater problem Initial work has already been accomplished to identify
inherent in the design and implementation of the code how security can be integrated into software systems.
itself. The systems security engineering capability maturity

While these fixes are labeled "security patches", they model (SSE-CMM) was launched in the late 1990's to

actually are less related to security than they are to address the need for holistic integration of security in

poor programming practice. Many programming the software development lifecycle [6]. The SSE-

errors can result in security vulnerability. Buffer CMM provides a framework to reason about security
needs, guidance, vulnerabilities, assessments, and

U21R IF J T 1 STAT, FN9 T A
Approved !or Public Release

Distribution Unlimited



effectiveness of security mechanisms themselves, how coding is presented above the basic functional
McGraw states that to practice good software security and semantic levels.
you must leverage good software engineering 2 1 Process Maturity
practices and start early in the development life cycle
[7]. Capability maturity evaluation criteria and the The amount of rigor (and therefore robustness or
subsequent security solutions advocated by security) that a development organization puts into its
professionals in the field have been aimed at higher software process is tied to the nature of the computer
level entities such as 'chief information officers, programs they develop. We notionally consider three
administrators, and infrastructure planners [8, 9]. levels of rigor, which can be logically tied to a likely

More recent work has begun to express practical level of capability and process level maturity (CMM
guidelines for programmers and developers and thus level). At the lowest level of required rigor,
get to the root of the problem. Hogland and McGraw disposable software is "here today and gone
[5] assert strongly that "bad" software is the root of tomorrow". Such programs have no need for
the security problem while Ghost et al. [8] express maintenance or lifecycle cost assessment. They are
that security problems are only fixed at the core by written to get a specific job done in a very short
building robust and survivable software. The tide is amount of time-with no view for long term use
beginning to turn towards fixing security at its root (maintenance nightmares occur when this assumption
source-where programmers actually create lines of is violated).
code and build software components. While disposable software can be produced by any

The remainder of this paper is organized along these CMM-level 1 organization, most software systems are
pedagogic lines as well. In section 2, we address what developed with expected longer term survivability.
should be considered foundational coding principals More rigor is required depending on the budget,
that support robustness. We discuss the educational customer base, projected lifetime, and complexity of
paradigm shift that should occur to support this the system to be developed. Typical software
change: clear identification of fault-tolerance risks development organizations strive for some level or
and coding techniques to mitigate those risks. Section process maturity to sustain the 80% category of non-
3 details coding principals and mechanisms to support disposable software-roughly striving for at least
security specific requirements themselves. Section 4 CMM-level 2 or 3 maturity for minimum success.
gives our conclusions and recommendations for future The highest level of rigor we term the "moon-shot"
work. system. This is software which is not only long term

2. Coding for Robustness and requires established disciplines in the
development organization for success, but it is

The root cause of many common security faults can software with very stringent requirements based on
be traced back to lack of risk avoidance for software safety (human life is at stake), monetary value
faults in general. Robustness, defined in [10], is the (multiple billions might be at risk), large user base, or
"degree to which a software component functions high maintenance cost factors (a satellite sent into
correctly in the presence of exceptional inputs or space). We would hopefully not rely on organizations
stressful environmental conditions". When talking with development capabilities lower than CMM-level
about exceptional cases for program execution, we 3 to undertake such development efforts. In fact, such
easily come into the modem day realm where software systems represent our desire to use the very
programs are used in ways that they were never best processes for software development that can be
intended to be used-with malformed inputs, altered used-in every area of the lifecycle.
program control flow, dynamically linked or patched Robustness and security can be seen in similar terms
code segments, and possible memory corruption. as rigor. Disposable software may not require or

Educational environments must begin to foster the benefit from either robust coding principals or
notion that secure programs are first and foremost integration of security requirements. Non-disposable
reliable and safe programs. Safe, in the loose sense of software, on the other hand, is more ubiquitous than
the word, meaning that programs clean up after either the moon-shot or disposable variants. Because
themselves, police their own code and data space, and most software falls into this category, we want future
don't assume anything from outside their environment programmers to understand their role in contributing
without verifying first. It is truly the ounce of to software that is not only functionally correct and
prevention that far outweighs the "tons" of cure later efficient, but that is robust and designed to prevent
down the road. The foundations, however, begin with faults. We consider next the source of vulnerabilities



from both common defects and dangerous coding publications, and books alike are trumpeting the need
techniques. We consider the risks that can occur from for security awareness and calling attention to these
simple but commonly overlooked programmer flaws, lack of attention to detail on the part of the
choices. programmer is really the major issue. True, buffer

2.2. Risky Defects overflows can be exploited to modify a variable or
data pointer or even the return address of a function

Much work has been done to identify coding that is sitting on the stack. Such modifications can

weaknesses and vulnerabilities that are security alter program behavior, application data, or execute
related, so-called [1, 2, 5, 8, 11, 12]. By definition, viral code. Nonetheless, these end results are
software vulnerability is a defect in either design or problems that concern robustness, not security.

implementation of code-and 90% of vulnerabilities Though security conferences, publications, and books
derive from exploiting known defect patterns in alike are trumpeting the need for security awareness
coding [11]. Practical avoidance of these defects-by and calling attention to these flaws, the major issues
identifying causes of failure in code and appropriate derive from lack of attention to detail on the part of
remedies to fix them-must be introduced early into the programmer. Traditional testing methods have
our curriculums. required overhaul to account for this new source of
2.3. Sources of Faults software weakness. Fault injection techniques [3, 4,

13] have been used for quite some time to identify
Buffer overflows have been called the "nuclear bomb and root out these failures, but do not guarantee their
of all software vulnerabilities" [5]. They are defined absence in a given program. Because data buffers and
as simple programming errors that allow memory memory locations are both used on the stack,
corruption to take place--data is written outside of redirecting program control flow becomes rather
preordained boundaries of some data structure in simple once a given weakness is discovered. True,
memory. Once corruption takes place, a multitude of buffer overflows can be exploited to modify a
very nasty attacks can be leveraged through the variable or data pointer or even the return address of a
software--overwriting of critical program function that is sitting on the stack. Such
information, changing global state, removing security modifications can alter program behavior, application
restrictions, or disabling program controls. In data, or execute viral code. Nonetheless, these end
languages like C, string handling routines that assume results are problems that. concern robustness, not
the presence of the NULL terminator create a ripe security.
environment for such attacks. Another class of vulnerabilities derives from integer

What was originally a library design choice to make manipulation errors and truncation [11]. Code that
the life of the programmer easier (you don't have to performs numeric computations by nature has the
manage the size of a string yourself) has now turned possibility for underflow, overflow, signed numeric
into an incredible security nightmare. The real errors, and truncation of data bytes because of smaller
problem, however, is that programmers are not taught data type capacities. Such errors occur because
early on that such assumptions are not valid from a ranges are not checked on variables or results, integer
fault-tolerant point of view. Even though fault operations are not bounded, and variables are wrongly
injection techniques [3, 4] have been developed to cast from larger types to smaller types. These flaws
identify and root out these failures, but do not again are attributed to poor programming practices
guarantee their absence in a given program. that do not consider robustness--even though they

can be exploited for malicious purposes. Such errors
It is no longer safe to assume that a NULL terminator occur not because security was in view to start with-
in a C program will always indicate the end of a but because good programming practices for -fault
string. Instead, the programmer should manage and tolerance were not encouraged.
verify string sizes for themselves. Curriculums must
establish that "normal" programs always check and Memory leaks are another source of problems that
verify memory operations-i.e., it is the programmer's revolve more around survivable code than security.
job to make sure buffer operations stay within their Leaks occur when programmers do not manage
bounds. memory properly-thus the operating system is not

aware of memory that should be free and available.
Because data buffers and memory locations are both Allocated memory locations can be read and exploited
used on the stack, redirecting program control flow by adversaries and exploited to reveal program data.
becomes rather simple once a given weaknessis Memory leaks can also occur around function calls
discovered. Though security conferences,



when parameters are altered by use of adversary- As another example, consider dynamic memory
controlled formatting strings, allocation. It is almost heretical to suggest that we

Yet again, these risks are not security-centric in could live without such a feature in programs, but
ne. aiTheystem friss failre tot s ridatecentri inpt static allocation of program resources ultimately leadsnature. They stem from failure to validate user input to more reliable code. How many errors in modem

or prevent users from (mistakenly or on purpose) software, not even related to security or intruder

providing erroneous input or formatting strings to the

program. Good fault-tolerant coding practices would activities, are related to improper memory
eliminate such vulnerabilities. management on the part of the programmer?Dynamic memory allocation can be incompatible with

2.4. Risky Coding Techniques both program predictability and is non-deterministic
by nature---qualities that fault-tolerant software

The marvel of modem programming languages is that should avoid. Our education process again must
they have greatly simplified the job of the change to not only teaching the functionality of
programmer to take software requirements and languages, but also the inherent risk to program
translate them into executable programs-all with reliability that comes when certain language features
little knowledge of the underlying hardware are used.
environment. However, even the best selling book of
all time can instruct us in this regard: "all things are 2.5. Techniques for Robustness
lawful for me, but not all things are helpful" (1 Cor Robust programming methods establish that
10:23). Though powerful language features are well programmers method esa or the

within a programmer's right to use, certain features programmers should expect and code for the

can cause undue problems in stressful or abnormal unexpected. We mention several methods here for
completeness and affirm that these practices need to

environments---environments where malicious parties be established in computer programming courses of
can wreak havoc when certain language features are all levels-including high level software
used. engineering-so that reliable coding becomes the

Bertrand Meyer was one of many to recognize the foundational premise on which other, more security
inherent dangers that come with powerful language related, techniques can be built. These principles can
features [14]. He notes that a language design can be be taught and enforced in the ground floor of
considered bad when "the programmer is presented programming level curriculum to solidify the
with a wealth of facilities, and left to figure out when importance of robust code.
to use each, when not, and which to choose when Type systems have been the subject of much debate
more than one appears applicable." Take for example ty e yste ms hv ben the thof much eatepolymorphism and the ability to dynamically bind over the years in terms of whether they increase
claymseshatmrun time.bPolymoophismigives thed programmer productivity or code reliability and
classes at run time. Polymorphism gives the reduce software faults. Type systems of programming
dangerous facility for a subclass to change the languages can be characterized as strong or weak
operations or intentions of its superclass. When while type checking can be termed static or dynamic
dynamic binding is allowed, an adversary can easily [16]. Strong typing simply dictates that that all types
take advantage of this facility for malicious purposes. for variables and data structures must be defined and

Aside from the security threat, however, advocates known at compile time. We would agree with such
against polymorphism in other languages have findings, in [17] that using strong typing does in fact
traditionally pointed to the decrease in reliability and lead to more reliable code and an overall reduction in
fault-tolerance that such features introduce [15]. The defect-induced software faults. In the case of RoboX
inherent risk of using dynamic binding is not which was implemented on two different platforms
primarily from malicious parties but rather that the and coded by different yet equally skilled teams, a
end-user or run time environment will not properly sixteen-fold increase in quality was noted and
execute the decision of which method to invoke. This attributed to the memory safety induced by strongly-
reveals a deeper fault tolerant problem-that of typed language [16].
ensuring dynamic code is locatable and loadable- Regardless of arguments for or against, strong typing
way before issues of Byzantine faults come into view. forces detection of type errors. This practice should be
In general, these programming features are powerful, introduced early in programming curriculums as a
but not conducive to reliable software. As such, general principle of robust coding. The more errors
curriculums need to promote the use of safer and that can be handled or prevented before softwaremoret relabl prgrmmn technique or prevntu beoeoftwr
more reliable programming techniques in lieu of execution, the more safe and reliable code will be.
certain language features like polymorphism. Both strong and static typing provides proof that some



aspect of a program executes correctly-but they can a good idea to use unsigned types for variables which
not prove the absence of all run time errors. should never have negative values. Programmers

should consider that letting a user control the formatwould involve the avoidance of variable length fieldss of input is usually a bad idea. String constants tend to

Any data field whose length is determined be better for both formatting and output.
dynamically reduces the verifiability and safety of a Plakosh also points out that numerous ANSI C
program automatically. Education should focus standard library functions are susceptible to buffer
programmers on the risk reduction techniques that overflow attacks. The use of these may endanger
will reduce run time faults-which includes verifying programs needlessly to faulty logic and runtime errors
as much of a program's data structure as possible from unexpected input. A better alternative may be to
before hand. use string functions where maximum number of bytes
A third technique for robust programming solves the can be specified in the operation. C++ string
problem of making environmental assumptions: functions and other "safe" string libraries also exist.
always filter input. Validation of input data so that In many cases, using a language that performs
only legal values are permitted should be discussed in
programming curriculum alongside the functional programming skills-but the better solution is to
aspects of how to get data into a program. This change the way we educate.
includes basic, good practices such as checking To conclude this train of thought, much of what is
integer ranges in code and using safe operations on touted currently as "secure" coding techniques are
untrusted data. Size validation of input data must really nothing more than programming principles that
guarantee that it does not exceed the size of its storage support robust and reliable software. Our educational
buffer-a basic quality coding practice that reduces paradigms must shift to introduce these concepts at
run time faults significantly. As a great side effect to the same time that functional aspects of programming
these techniques, of course, security threats are languages are taught. When rigor is demanded in
consequently reduced, software development, programmers must be familiar

with standard coding practices that support safe,Most importantly, extensive and systematic testing reliable, and efficient software. The burden rests on
should be considered normal and common practice for the educational establishment to instill this notionprogrammers and no longer relegated in academic..

curriculum to specialized courses. Source code early, consistently, and continuously in its academic
auditing and reviews need to be integrated as part of programs. Once this foundation is present, coding for
traditional language courses to establish that rigor is security specific threats is not only possible, but can
no longer an option for non-disposable software be taught from a distinctly different pedagogic
systems. Static and dynamic analysis techniques and framework.
the proper development of testing suites must also 3. Coding for Security
take forefront in the way academic institutions present
programming to future professionals in the field. Programs may not rely upon or need protection
Tools for checking the correctness of program code because either there is low risk of malicious or
need to be introduced at the same time that compiler mischievous behavior or there is less sensitivity to
features are being taught. environmental influences. The extensive, and still

By the intermediate programming level, most expanding, business reliance on the Internet is a major
programming students have been introduced to driving force into security-aware practices.
graceful degradation techniques. The notion is that It is easy to understand why it has taken so long for
when unexpected program termination is unavoidable, security issues to become incorporated into software
programmers reduce the impact to the system and to practices. Programming-in security is not cheap. First
the end user. and foremost, for software to be secure, programmers

In addition to these, there are a multitude of other must apply their maximum level of rigor to ensure
practical techniques that fall under the category of that their software is essentially flawless. Any routinepracica tehniuestha fal uderthecatgor of programming error injects vulnerability into the
good and safe programming rules. With the increase
of processor capability, CPU cycles tend not to be the
greatest driving factor in software systems these
days--quality, reliability, and safety may be however.
Among suggestions provided by Plakosh in [11], it is



system'. The cost of the additional rigor necessary to necessary to prevent program faults. For security
reduce errors coupled with the increasing pressure to sensitive software, only the most rigorous fault
be the first to the market often leaves security as a prevention is suitable, since any error injects security
second class citizen... and a lot of money has been vulnerability into the software.
made based on this business model. The sins of thepast are now catching up with us, the innocent Moreover, other security vulnerabilities occur because
observers, programmers fail to be sufficiently skeptical. Thefollowing are security-specific techniques that are
The Internet itself was not designed with security in sometimes taught simply as good programming
mind; rather the early (and lingering) focus was on practices, but that have a direct impact on software
connecting computers in a heterogenous environment, security.
Security was left to the application or to the next 3 2
generation (e.g. IP v6) and was not a primary concern
because business application was not driving the One of the easiest places to implement controlled
development. Security was simply an afterthought. skepticism is through aggressive garbage collection.

Still, it would be nice if security were transparent to Items left over from program execution can offer a
users. Unfortunately, often only the user knows what sophisticated intruder information free of charge and
security is need, though they are often do not with little effort, depending only upon the operating
understand the vulnerability. This is nowhere better system procedures for terminating programs and the
illustrated than with Internet browser security ingenuity of the adversary.
mechanisms, where only rare users have a clue about One of the easiest items for a programmer to clean up
"restricted or "trusted" sites, let alone what the impact is memory. When a memory location is no longer

of allowing".net"or"authenticode", needed by a program, it should be cleaned

Thus, if applications are to be secure, analysts must be (overwritten) and released. When a program
able to recognize security requirements during early completes its task normally, it should clean and
development phases, and these requirements must release any remaining memory resources. This may
trigger an appropriate response from designers and mean executing a loop that overwrites a character at a
coders. The following discussion addresses security time, or utilizing a programming language construct
threats to software2 and identifies some specific that accomplishes the same function, as long as the
responses that are appropriate for applications where action is overt (not assumed by some unproven or.
security requirements are identified. non-standard feature).

3.1. Caveat Emptor Of course sophisticated adversaries may circumvent
this process by causing a program's abnormal

Most security specialists are naturally skeptical. They termination before cleansing occurs. We posit that
question even the simplest assumptions and verify ad such abnormal termination is only possible through
infinitum. While extreme responses are only programming errors and again emphasize techniques
necessary in extreme circumstances, an elevated level for graceful degradation prevented in the previous
of skepticism is necessary when programming section.
software for systems with security requirements. Ideas Memory is not the only resource where sensitive
that project managers driven by deadlines and residuals may reside. Communication connections arefunctionality baselines see as extreme, are seen as reiulmarsd.Co unctncnetosae

vulnerable to data interception, message injection, and
routine by security specialists, session hijacking. Thus, connections that pass

The question becomes where between the "beta test sensitive data must be carefully protected, using direct
and out the door" and "zero defect" approaches does security techniques of strong authentication and
responsible software practice lie? We earlier proposed encryption. These techniques are recognized as being
a three tiered hierarchy to reflect the level of rigor employed in classical security systems.

Multi-process or multi-threaded systems are notorious

Here is a clear illustration of the relationship of proper for loosing track of or leaving subordinate processes

programming practices to security. Sloppy or less rigorously unguarded when the main program terminates. If left

written programs are rarely secure. unguarded, these processes may be hijacked by

2 sophisticated intruders in much the same way as
Here, we take a caveat emptor approach and suggest connections. Such "ghost" processes may be used by

actions that programmers can take in addition to (possibly
overlapping) operating system protection.



intruders to reveal residual data or other malicious areas is prevented by the operating system, but
intent. skeptical programmers need not rely on that.

3.3. Starting with a Clean Slate 3.5. Preventing Hidden Features

One of the first things that entry-level programmers We now make a decided shift to address an issue has
are taught is how to initialize data structures. They are been at the forefront of many programming
aided in this elementary task by language and discussions. That is, how can we prevent
architectural approaches to data initialization, programmers from incorporating unwanted, possibly
However, the need to initialize data structures by malicious, features into programs that they are
clearing out all residual data is often not recognized assigned to write? Thus, we are talking about
by programmers eager to exercise their new-found programming techniques to protect clients FROM
skills to produce highly functional programs. For programmers.
security sensitive programs, proper initialization is Two examples of malicious features are trap doors
essential; else data may be injected into a process and enavin o Tal doos are ans tha t
from an unrelated process that previously utilized the and penny shaving. Trap doors are mechanisms that

memory location. allow the programmer access to the system outside
m othe normal authorization mechanisms. Trap door

Again applying the caveat emptor principle, one access is intended to be undetectable and to provide
approach to addressing memory related vulnerability the highest priority and broadest levels of access.
is for the application programmer to manage their Penny shaving involves applications that manage
own memory, where possible. This entails a some resource. Programmers may enter code that
programmer establishing a memory management allows them to divert a very small [micro] portion of
process that requests memory in bulk, then manages the resource from each transaction for their personalthe allocation during •execution.threorefo eahrnscinortirpsnl

use or redemption. Of course, this code is intended to
Under this paradigm, the entire memory allocation be unidentifiable and to operate covertly.
can be cleared when it is acquired and increments can Coding techniques cannot prevent excess features
be cleared when they are returned internally for such as trap doors and penny shaving. The best
redistribution. The internal memory manager can also chance for this is presently entined in rigorous
clear the entire allocation before releasing it to the development processes that couple a structured
operating system just prior to program termination, review process and incorporate verification tools with

3.4. Cleaning Temporary Storage Areas software coding.

We briefly digress to address an issue that is not Where coding practice can contribute to security in

under the control of the application programmer, but this area is by making functionality more evident

that reflects a similar security principle, that of from the program's static representation.

clearing temporary storage areas. Operating systems Standardization based upon templates and patterns

and input-output systems frequently utilize temporary can help make deviations stand out during the review

storage locations such as caches, swap spaces, and process, thus allowing detection and removal of

print spools for synchronization, performance, or malicious (or other non-specified) functionality.

efficiency optimization. Not only are the operations 3.6. Tamper-proof software
themselves outside the control of the programmer, the
storage areas themselves are not directly or legally Protecting programs from illegitimate use is a classic
accessible to the programmer. problem in computer science [18, 19, 20, 21, 22, 23],

While caching may be out of their control, application both as a matter of program security and of digital

programmers may be able to reduce vulnerability rights management.

injected by temporary storage operations. Tamper-proof techniques have been considered as a
Compartmentalizing operations so that data is used means to protect software that executes on remote
immediately after it is required and the data structures hosts. It turns out to be a very difficult problem to
are destructed promptly can minimize data exposure protect program execution, manipulation, and copying
to swap spaces. Encrypting data before it is sent to in an environment that is controlled by a sophisticated
storage can reduce (or eliminate) exposure of data to adversary.
caches. In some environments these operations are Program obfuscation is one approach to tamper-
redundant because exposure in temporary storage proofing, though systematically strong obfuscation is



generally considered to be impossible [24, 25]. Still, errors in them can impact other (possibly level 3)
approaches based on complex program control flow applications, multiplied by the scale of the Internet.
[21] and others on homomorhpic encryption [22] Similarly, we posit that security conscious systems
reflect some progress in this area. reflect three basic levels. The first level is that

3.7. Security Systems effected by application of rigorous program protection
techniques (such as those described in sections 3.2

We intentionally left this class of techniques until last. and 3.3). These are techniques that do not require any
Information security is a discipline in itself dealing special security training, but that do provide a security
with the study of mechanisms for meeting all shapes specific function (such as privacy protection through
and sizes of security requirements. Cryptographic garbage collection).
systems and approaches to provide privacy, integrity,
authentication, nonrepudiation and combinations Our second level of security rigor is for systems that

therein are interesting and applicable to this have software-specific security consideration, such as

discussion, but are omitted here for lack of space. systems where the code is vulnerable to modification
or copying or where the system is particularly

Suffice it to say that the basics of information security vulnerable to software that may contain hidden,
are essential for any comprehensive computing malicious functionality (sections 3.4 and 3.5)
science curriculum. These basics include the
fundamentals of cryptography, cryptographic Systems that require level 3 security rigor contain
protocols, encryption systems, information assurance, sensitive information whose compromise may result

principles of privacy, legal and ethical issues, and in high impact consequences, such as loss of life or

physical security, significant resources. These systems demand
cryptographically strong techniques for authentication

4. Teaching Security-Aware Programming and access control.

In spite of the attention that has been given to secure 4.2. Security Aware Programming in a
coding recently, little has changed in programming Computing Science Curriculum
curriculum to reduce vulnerability in our software
systems. Here we propose concrete steps that can be There is a natural correlation between the rigor
taken to influence entry level programmers to develop partitions presented in the previous section and a
software that has more positive security and reliability standard professional programming curriculum. It

properties. turns out that the lower rigor levels are the most
applicable (and understandable) to junior, entry level

4.1. Partitioning Rigor programmers. Conversely, the higher levels are more
naturally incorporated into more advanced, theoretic

The foundation of our approach is to partition programming and security courses. Table 1
applications into six classes consisting of three levels summarizes our pedagogy based on the hierarchical
of rigor as seen from each the security and reliability rigor model.
perspectives. Entry level programmers should be
taught the difference between disposable software
(robustness level 1) and "moon shot" (robustness level Robustness Secur
3) systems. They should be taught mechanisms for Course Rigor ity
development expediency, so that prototype and proof Rigor
of concept implementations can be quickly and Entry level 1,2,3 (overview)

efficiently built. They should also understand the 2nd course 2, 3 1, 2
rigor necessary to develop critical applications such as Data Structures 2, 3 1, 2
embedded software in life support, surgical, or 1, 2,
weapons systems. SWE 1, 2, 3 3

Presently, the instructional emphasis has been on PL 1,2,3 1,2
robustness level 2 systems (all systems that are not Security 3 2, 3
level 1 or level 3) that classically categorize the vast Table 1. Development and Security Rigor
majority of all information systems. That balance is
changing. The impact of buffer overflow problems Specifically, we propose to introduce the three
has begun to convince developers that systems once hierarchical robustness levels at the entry
considered level 2 are actually level 3 simply because programming course. More in depth study of level

two and three rigor follow in the second programming



course. Programming constructs and foundations are software rigor categories for robustness and security.
evaluated in the programming languages course and These categories form the basis of a new approach to
their place in the development process is addressed in teaching security-aware programming or coding
the software engineering course. techniques.

Security rigor is investigated primarily in the upper We give an approach for teaching appropriate
level programming courses and in the security course. security-aware concepts in a professional programmer
Programming practices required for secure software curriculum and map the skills and concepts to specific
are considered in all programming courses and their courses.
importance in this area is emphasized. Discussion of Software vulnerability is second only to identity theft
advanced topics is reserved for programming as the main security problem of the modem Intemet.
languages, software engineering, and security courses. We propose an approach to reversing the trend that is

5. Conclusion inexpensive and consistent with existing and known
successful programming practice.

In this paper we present a model for analyzing,
measuring, and teaching programming rigor. Our
model is based on a hierarchical partitioning of

6. References

[1] Howard, M. and LeBlanc, D., Writing Secure Code, [10] IEEE Std 610.12-1990, IEEE Standard Glossary of
Microsoft Press, Seattle, WA, 2002. Software Engineering Terminology.

[2] Viega, J. and McGraw, G., Building Secure Software: [11] Plakosh, D., "Coding Flaws That Lead to
How to Avoid Security Problems the Right Way, Security Failures", 2nd Annual Hampton
Addison-Wesley, Boston, MA, 2002. University Information Assurance Symposium.

[3] Ghosh, A. and O'Connor, T., "Analyzing Programs for April 2005.

Vulnerability to Buffer Overrun Attacks", Proc. of the [12] Peteanu, R., "Best Practices for Secure Develop-
21st NIST-NCSC National Information Systems ment", citeseer.ist.psu.edu/peteanu0lbest.html,
Security Conference, 1998. June 2005.

[4] Haugh, E. and Bishop, M., "Testing C Programs for 13] Ghosh, A. and Voas, J., "Inoculating software for
Buffer Overflow Vulnerabilities", Proc. of the 2003
Symposium on Networked and Distributed System survivability", Communications of the ACM, vol.
Security (SNDSS 2003), Feb. 2003. 42, no. 7, 1999, 3844.

[5] Hoglund, G. and McGraw, G., Exploiting Software: [14] Meyer, B., "Principles of language design and
How to Break Code, Addison-Wesley, Boston, MA, evolution", Proc. of the 1999 Oxford-Microsoft
2004. Symposium in Honour of Sir Tony Hoar,

[6] Cheetham, C. and Ferraiolo, K., "The Systems Security Millenial Perspectives in Computer Science,

Engineering Capability Maturity Model", 21st 2002, 229-246.
National Information Systems Security Conference, [15] Schwartz, J., "Object Oriented Extensions to
October 5-8, 1998, Arlington, Virginia, USA. Ada: A Dissenting Opinion", Proc. of the

[7] McGraw, G., "Software Security", IEEE Security Conference on TRI-ADA '90, Baltimore,
and Privacy, vol. 2, no. 2, March/April 2004, 80- Maryland, December 03-06, 1990, 92-94.
83 [16] Lehrmann-Madsen, 0., Magnusson, B., and

[8] Ghosh, A, Howell, C., and Whittaker, J., "Building M6ller-Pedersen, B.,"Strong Typing of Object-
Software Securely from the Ground Up," IEEE Oriented Languages Revisited", Proc. OOPSLA
Software, vol. 19, no. 1, January/February 2002, 14-16. and ECOOP, ACM Press, New York, NY,

[9] Lee, Y., Lee, J., and Lee, Z., "Integrating Software October 1990, 140-150.
Lifecycle Process Standards with Security [17] Tomatisa, N., Brega, R., Rivera, G., and
Engineering", Computers and Security, vol. 21, no. 4, Siegwart, R., "May You Have a Strong (-Typed)
2002, 345-355. Foundation: Why Strong-Typed Programming



Languages Do Matter", Proc. of the International
Conference on Robotics and Automation, New
Orleans, April 2004

[18] David Aucsmith, "Tamper Resistant Software:
An Implementation", Proceedings of the First
International Workshop on Information Hiding,
Pages: 317-33, 1996, LNCS 1174

[19] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. Mitchell, and M. Horowitz.
Architectural Support for Copy and Tamper
Resistant Software. In Proceedings of the 9 Int'l
Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOSIX), pages 169--177, November 2000.

[20] David Lie, John Mitchell, Chandramohan A.
Thekkath, Mark Horowitz", Specifying and
Verifying Hardware for Tamper-Resistant
Software", 2003 IEEE Symposium on Security
and Privacy May 11 - 14, 2003 Berkeley, CA. p.
166

[21] Toshio Ogiso ,Yusuke SakabeMasakazu
Soshi,and Atsuko Miyaji, "Software Tamper
Resistance Based on the Difficulty of
Interprocedural Analysis", WISA 2002, Cheju
Island, Korea, August 28-30, 2002

[22] Sander, T., and Tschudin, C.F., "Protecting
mobile agents against malicious hosts", 'Mobile
Agents and Security', Lecture Notes in Computer
Science, Vol. 1419, SpringerVerlag, 1997, pp.
44-61.

[23] T. Sander, and C. Tschudin, "Towards mobile
cryptography." Proceedings of the 1998 IEEE
Symposium on Security and Privacy, Los
Alamitos, CA, USA: IEEE Comput. Soc, 1998.
p.215-24.

[24] [NAL] L. D'Anna, B. Matt, A. Reisse, T. van
Vleck, S. Schwab, P. LeBlanc. "Self-Protecting
Mobile Agents Obfuscation Report". Network
Associates Laboratories, Technical Report 03-
015 (final), June 30, 2003.

[25] B. Barak, 0. Goldreich, R. Impagliazzo, S.
Rudich, A. Sahai, S. Vadhan, K. Yang. "On the
(Im)possibility of Obfuscating Programs". In
Proceedings of the 21st Annual International
Cryptology Conference on -Advances in
Cryptology. LNCS, v. 2139, pp. 1-18. 2001.


